Sunday, August 7, 2022

My Ethnicity Results -- 2022


Two years ago I blogged about my ethnicity as predicted by five different DNA Labs: "Should we CELEBRATE genetic Ethnicity?" At the time I had "commissioned" Celebrate DNA to make me a tee shirt documenting these five results:


I decided to check each of these predictions today to see what changes, if any, had been made. 

Living DNA

  • Great Britain and Ireland  100 %  (last updated February 3, 2020).


  • Ireland 45%; 
  • England, Scotland and Wales trace.



  • British and Irish 62.9%

 My Heritage:

  • English 53.1%
  • Irish, Scottish, and Welsh 5.5%

So, what should I wear to the next family reunion?


Monday, August 1, 2022

DNA Testing your DESCENDENTS with BIG Y 700--Part 2


Earlier this year I published a post that is part 1 of this post. In that I described testing my grandson and a couple of questions it raised.

  1. Did the one mutated ySTR between me and my grandson occur when my son was conceived or when my grandson was conceived?
  2. Will my son's terminal ySNP cover my grandson's "private variant" or is that variant the unique marker for my grandson? 

Now my son's test results are back and I have the answers to those questions and more! 
  1. My son and I are 111/111 marker exact ySTR matches so my grandson is the mutant. The mutation between me and my grandson that I reported in my previous post was formed when my grandson was conceived.
  2. My son's terminal ySNP does cover my grandson's "private variant". As of now neither of them are shown to have any private variants.
More exciting to me is that my son and grandson share a terminal ySNP, R-FTC50269, that I do not share. It appears to have been formed when my son was conceived in 1969. All patrilineal descendants of my son--and therefore of me--will forever carry this ySNP. FTDNA's new beta version of their Discovery tool illustrates this ySNP:

Your Y-DNA Haplogroup Report for R-FTC50269

The Y chromosome is passed on from father to son, remaining mostly unaltered from generation to generation, except for small trackable changes from time to time. By comparing these small differences in high-coverage test results, we can reconstruct a large Family Tree of Mankind where all Y chromosomes go back to a single common ancestor who lived hundreds of thousands of years ago. This tree allows us to explore paternal lineages through time and place and to uncover the modern history of your direct paternal surname line and the ancient history of your ancestors.



Haplogroup R-FTC50269 represents a man who is estimated to have been born around 50 years ago, plus or minus 100 years.

That corresponds to about 2000 CE with a 95% probability he was born between 1885 and 1998 CE.

R-FTC50269's paternal lineage branched off from R-FGC43697 and the rest of mankind about 100 years ago, plus or minus 50 years.

He is the most recent paternal line ancestor of all members of this group.

There are 2 DNA test-confirmed descendants, and they have specified that their direct paternal origins are from United States.

As more people test, the history of this genetic lineage might be further refined.


For more information about this ySNP click here.

It looks like testing the younger generation has given me a genetic coat of arms!

Tuesday, March 15, 2022

DNA Testing your descendants with BIG Y


Those of us who are veterans of atDNA testing have long preached "test the oldest generation of the family." For atDNA testing this is still great advice. However, there may be times when we can learn from testing the youngest generation.

I know that there are various schools of thought about how old a child should be before they are tested. That topic is an important one which I will not deal with here. I have long tested family members of all ages. By so doing I discovered several years ago that grandchildren do not inherit exactly one-fourth of their atDNA from each grandparent. You can see my blog post about that (I got it wrong).

More recently I bought a BIG Y 700 test for my oldest grandson. Until now ySTR tests have primarily been to find matches among other test-takers. ySNP tests have been primarily to discover new branching points along the Y chromosome since possibly sixteen million or more locations can be explored. As his results have come back, I have so far learned two things: 

  1. Either my grandson or his father is a "mutant." My grandson matches me on 110 of the first 111 markers over which FTDNA tests ySTRs. In one of the two conception events a mismatch occurred. 
  2. Prior to my grandson's test results, I had two "private variants" not found in the genome of any man previously tested. Now both of those variants are shown in the box with the white background in the column on the left below. Now that two men have had those ySNPs show up in their tests, they have become "named SNPs" and added to the BIG Y Tree, In addition my grandson's test results had identified a new "private variant" which had not previously been discovered.    


So what if anything have I learned about my family history by testing my grandson? In the test of his first 111 ySTR markers, we had one mismatch. This allows FTDNA's YDNA TiP tool to predict that we have a 78% chance of sharing a common patrilineal ancestor within 2 generations. (The correct answer.) The TiP tool predicts we have a 95 percent chance of sharing that common ancestor within 4 generations. He is not my closest match over the first 111 ySTR markers. I have one cousin who is an exact match over those markers. However, that cousin shares 6 Big Y STR differences with me when all 590 STRs tested are considered. My grandson shares only 2 STR differences with me over all STRs 659 tested. Since ySTRs can mutate at random, when more are tested the results are more accurate. The results confirm that he is in fact probably relate to me within two generations along my patrilineal line.

The two ySNPs in the white box above, R-FGC43697 and R-FGC43683 are equivalent SNPs for genealogical purposes at least for now. We really can't tell which occurred first. What these designations tell us is that these SNPs are part of the R1b male haplogroup and they are #43,683 and #43,697 of the ySNPs discovered by and named by the Full Genome Corporation lab. Other than that these numbers have no significance. For now my grandson and I are the only two men who have mutations at these locations. We would expect any of our male descendants to inherit them. They would become a sort of genetic signature of our particular family line of descent--our genetic coat of arms. Early indications are that these mutations may have occurred about a hundred years ago. More testing by family members will be needed to learn more specifically when they may first have occurred. Below is a timeline chart generated by Rob Spencer's Tracking Back tools:

This suggests that ySNP R-FGC43697 may have been created by a mutation in a birth event occurring around the beginning of the 20th century. Also note that my previous haplogroup assignment of FGC43694 as well as other nearby cousins like all of us under ySNP R-BY2666 appear to be connecting back as far as 1,500 years ago. Several SNPs back then have yet to be separated out time wise.  

The results of my grandson's test have pushed my own terminal ySNP down into genealogical time--perhaps to the last two or three generations. This has caused us to order a BIG Y 700 test for my son. That may be overkill. I would have considered it to be a few months ago. However, it will show us a couple of things at the very least.

  1. Did the one mutated ySTR between me and my grandson occur when my son was conceived or when my grandson was conceived?
  2. Will my son's terminal ySNP cover my grandson's "private variant" or is that variant the unique marker for my grandson?

It is an expensive way to add these two bits of information to our family history but I could plan a genealogical research trip that could cost more that the test with less guarantee of new information.